Comprehensive spreadsheet creation, editing, and analysis with support for formulas, formatting, data analysis, and visualization.
Unless otherwise stated by the user or existing template
A user may ask you to create, edit, or analyze the contents of an .xlsx file. You have different tools and workflows available for different tasks.
LibreOffice Required for Formula Recalculation: You can assume LibreOffice is installed for recalculating formula values using the scripts/recalc.py script. The script automatically configures LibreOffice on first run, including in sandboxed environments where Unix sockets are restricted (handled by scripts/office/soffice.py)
For data analysis, visualization, and basic operations, use pandas which provides powerful data manipulation capabilities:
import pandas as pd
# Read Excel
df = pd.read_excel('file.xlsx') # Default: first sheet
all_sheets = pd.read_excel('file.xlsx', sheet_name=None) # All sheets as dict
# Analyze
df.head() # Preview data
df.info() # Column info
df.describe() # Statistics
# Write Excel
df.to_excel('output.xlsx', index=False)
Always use Excel formulas instead of calculating values in Python and hardcoding them. This ensures the spreadsheet remains dynamic and updateable.
# Bad: Calculating in Python and hardcoding result
total = df['Sales'].sum()
sheet['B10'] = total # Hardcodes 5000
# Bad: Computing growth rate in Python
growth = (df.iloc[-1]['Revenue'] - df.iloc[0]['Revenue']) / df.iloc[0]['Revenue']
sheet['C5'] = growth # Hardcodes 0.15
# Bad: Python calculation for average
avg = sum(values) / len(values)
sheet['D20'] = avg # Hardcodes 42.5
# Good: Let Excel calculate the sum
sheet['B10'] = '=SUM(B2:B9)'
# Good: Growth rate as Excel formula
sheet['C5'] = '=(C4-C2)/C2'
# Good: Average using Excel function
sheet['D20'] = '=AVERAGE(D2:D19)'
This applies to ALL calculations - totals, percentages, ratios, differences, etc. The spreadsheet should be able to recalculate when source data changes.
python scripts/recalc.py output.xlsx
status is errors_found, check error_summary for specific error types and locations#REF!: Invalid cell references#DIV/0!: Division by zero#VALUE!: Wrong data type in formula#NAME?: Unrecognized formula name# Using openpyxl for formulas and formatting
from openpyxl import Workbook
from openpyxl.styles import Font, PatternFill, Alignment
wb = Workbook()
sheet = wb.active
# Add data
sheet['A1'] = 'Hello'
sheet['B1'] = 'World'
sheet.append(['Row', 'of', 'data'])
# Add formula
sheet['B2'] = '=SUM(A1:A10)'
# Formatting
sheet['A1'].font = Font(bold=True, color='FF0000')
sheet['A1'].fill = PatternFill('solid', start_color='FFFF00')
sheet['A1'].alignment = Alignment(horizontal='center')
# Column width
sheet.column_dimensions['A'].width = 20
wb.save('output.xlsx')
# Using openpyxl to preserve formulas and formatting
from openpyxl import load_workbook
# Load existing file
wb = load_workbook('existing.xlsx')
sheet = wb.active # or wb['SheetName'] for specific sheet
# Working with multiple sheets
for sheet_name in wb.sheetnames:
sheet = wb[sheet_name]
print(f"Sheet: {sheet_name}")
# Modify cells
sheet['A1'] = 'New Value'
sheet.insert_rows(2) # Insert row at position 2
sheet.delete_cols(3) # Delete column 3
# Add new sheet
new_sheet = wb.create_sheet('NewSheet')
new_sheet['A1'] = 'Data'
wb.save('modified.xlsx')
Excel files created or modified by openpyxl contain formulas as strings but not calculated values. Use the provided scripts/recalc.py script to recalculate formulas:
python scripts/recalc.py <excel_file> [timeout_seconds]
Example:
python scripts/recalc.py output.xlsx 30
The script:
Quick checks to ensure formulas work correctly:
pd.notna()/ in formulas (#DIV/0!)The script returns JSON with error details:
{
"status": "success", // or "errors_found"
"total_errors": 0, // Total error count
"total_formulas": 42, // Number of formulas in file
"error_summary": { // Only present if errors found
"#REF!": {
"count": 2,
"locations": ["Sheet1!B5", "Sheet1!C10"]
}
}
}
data_only=True to read calculated values: load_workbook('file.xlsx', data_only=True)data_only=True and saved, formulas are replaced with values and permanently lostread_only=True for reading or write_only=True for writingpd.read_excel('file.xlsx', dtype={'id': str})pd.read_excel('file.xlsx', usecols=['A', 'C', 'E'])pd.read_excel('file.xlsx', parse_dates=['date_column'])IMPORTANT: When generating Python code for Excel operations:
For Excel files themselves:
* Example installation command